Introduction to Database
Systems

CSE 444

Lecture #16
March 5, 2001

Query Optimization

Required Reading: 7.2, 7.4, 7.5, 7.6

Query Optimization:
Phases

OParsing phase
OProduces a parse tree
OQuery-Rewrite phase
OProduces a logical tree
OPhysical Query plan generation
OProduces executable (physical) plan

Query Optimization

OAlgebraic laws provide alternative
execution plans

O Estimate costs of alternative modes of
execution

O Efficiently search the space of alternatives
OSimplify search by applying heuristics

(without costing)
Oapply laws that seem to result in cheaper plans

Converting from SQL to
Logical Plans

Select al, ..., an
From R1, ..., Rk
Where C

Moy an(0 c(R1 1 R20 .y RK))

,,,,,

Converting from SQL to
Logical Plans

Select al, ..., an
From R1, ..., Rk
Where C

Group by b1, ..., bl

rlal,...,an(y bi, ..., bm, aggs (0 C(Rl WwR2 w .
LRk)))

Algebraic Laws

O Commutative and Associative Laws
ORUS=SUR, RU(SUT)=(RUS)UT
ORNS=SNR RNGNT)=RNS)NT
OR LLS =S LLR, R LS LUT) = (R LLS)

LT

O Distributive Laws
OR LSUT) = (RLS) U (RLLT)

Algebraic Laws: Selection

OLaws involving selection:
00 canncR) = 0 (0 c(R)) =0 (R) N0 (R)
00 corc(R) =0 (R)U o (R)
Ooc(R 14S)=0(R) LS

OWhen C involves only attributes of R

Oocc(R=S)=0:(R)-S
Occ(RUS)=0c(R)Uac(S)
Ooc(RNS) =0.(R)NS

Algebraic Laws: Selection

OExample: R(A, B, C, D), S(E, F, G)
Ooes(R LLS) = ?
0 0 a=sanpg=9 (R LS) = ?

Heuristic: Predicate
Pushdown

pname

m
pname

O price>100 AND city="Seattle" ‘
T -
maker=name

><

- (¢}
maker=name opr ce>100 cuT:“Seanle“

Product Company Product Company

The earlier we process selections, less tuples we need to manipulate
higher up in the tree (but may cause us to lose an important ordering
of the tuples).

10

Algebraic Laws: Projection

OLaws involving projections
O Nw(R LLS) = M(Mp(R) LLIM(S))

OWhere N, P, Q are appropriate subsets of
attributes of M

0 Mu(Ny(R)) = I-IM,N(R)
OExample R(A,B,C,D), S(E, F, G)
O Mage(R 'B':—és) =, (N,(R) LD':—E'H7(S))

Other Algebraic Laws

O Duplicate Elimination
O8(RLLIS) = &(R) LLI §(S), ...
O Grouping
0 3(w(R)) = yu(R), ...

OMany transformations depend on aggregate
OMAX, SUM etc.

Cost Estimation

OFor a given logical plan, there may be
many possible physical plans

OWe want to choose physical plan with
lowest execution cost

OGoal: For a given physical plan, estimate
cost without executing the query

Cost Estimation

OIdeally should be...
OAccurate
OEasy to compute
OConsistent
0E.g. cardinality should not depend on join order
OReality ...
a?

Estimating Size of Selection

O How to estimate size of S = 0 p_5(R) ?
O Approach 1: Guess!
O Surprisingly popular method e.g. T(R)/10
O Approach 2: Use statistics
OT(S) = T(R)/V(R,A)
Where V(R,A) = number of distinct values of A in R
O How about S = g . 5(R) ?
O Guess: T(R)/3
[0 Statistics: Use histogram if available (more later)

Estimating Size of Projection

O Projection does not change humber of
tuples

0Size estimate depends on length of
columns

OExample: R(a,b,c): a, b are integers, ¢
string of 100 bytes. Tuple header = 12
bytes, Block size = 1024

Omp(R) = ? 1, ,(R) = ?

OWhat if c is variable length string?

Estimating Size of Join

OR(a,b), S(b,c), estimate T(RLLS)
OProblem: Don’t know how values of R.b and
S.b are related
OMay be disjoint sets of values => T (RLL_S) =0

0S.b may be key of S and R.b may be foreign
key => T(RLLS) = T(R)

OEstimate for T(RLUS)
OT(R)T(S)/max(V(R,b), V(S,b))

Estimating Size of Join

OExample: T(R)=1000, T(S)=2000, V(R,b)
=20, V(S5,b) = 50
OT(RLS) =7?

Estimating Size of Join

OWhat happens if query has multiple join
attributes?
OExample: R(a,b,c), S(b,c,d)
OEstimate = ?

OWhat happens if query has joins of many
relations?
OExample: R(a,b), S(b,c), U(b,e)
OEstimate = ?

Estimating Size of Other
Operators

OUnion (R,S)
OBag Union: T(R) + T(S)
0JSet Union: Max(T(R), T(S)) + Min(T(R),T(S))/2
OIntersection (R,S)
OMIn(T(R),T(S))/2
O Difference (R,S)
OT(R) - T(S)/2
ODuplicate Elimination

Cost Based Plan Selection

O Estimates for size parameters
OUse statistics, e.g. histograms
OEnumerating physical plans

Histograms

OPopular in commercial DBMSs
OCan give much more accurate cost
estimates
OMany types of histograms
UEqual-width
UEqual-depth
OFrequent values
O...

Equal-width Histogram

OEach bucket in histogram has same width
OExample: Values = {2,5,23,25,29,31}
JRange Count

01-10 2
011-20 0
021-30 3
031-40 1

OT(0 ac0(R)) = 2

Equi-depth Histogram

O Each bucket in histogram has same
number of values
OExample: {2,5,33,35,39,41}
UBucket Boundary
o5
035
041

Frequent Values

OKeep exact counts of frequent values

OTotal count of all other (non-frequent)
values

OExample: Values = {1,3,4,4,4,4,4,9}
OHistogram: 4: 5, Others: 3

Using Histogram for Size
Estimation

OExampled R(a,b) S(b,c).
OHistograms:
OR.b: 1:200, 0:150, 5:100, Others:550
0S.b: 0:100, 1:80, 2:70, Others:250
OSize of join = ?

Creating and Maintaining
Statistics in a DBMS

UFor large tables, creating/refreshing
statistics can be expensive
OAlternatives:

URefresh statistics only after many changes to
data

UOIncremental updating
USampling — need to be careful...

Enumerating Physical Plans

O Exhaustive — Consider all possible:
OJoin Orders
UAlgorithms for each operator
OHeuristic Search
OE.g. Greedy approach

OPick next relation such that join size is
smallest

Enumerating Physical
Plans

OBranch-and-Bound Enumeration
OFind a good starting plan (having cost C)

OIn subsequent search, eliminate any subquery
with cost > C

OHill Climbing
OStart with heuristically selected plan

UExplore plans in the “neighborhood”
UE.g. replace Nested-Loops join with Hash-Join

Enumerating Physical
Plans

O Dynamic Programming
OBottom-up strategy
OFor each subexpression, only keep plan with
the least cost
OConsider possible implementations of each
node assuming
UExtension: also consider interesting orders

0E.g., when subexpression is sorted on a sort
attribute at the node

OMore later

Determining Join Order

O Select-project-join

OPush selections down, pull projections up
O Hence: we need to choose the join order
OThis is the main focus of an optimizer

Determining Join Order:
Join Trees

OR1 pqR2pq¢x Rn

0 Join tree:
/ . \
> >
R3 R1 R2 R4

O A join tree represents a plan. An optimizer
needs to inspect many (all ?) join trees

Linear Join Trees

O Left deep:
P
/N(~ R4
/N\ R2
> R5
/N
R3 R1

Bushy Join Trees

N/N\N
AN
Rl/ \RS

Join Ordering Problem

OGiven: a query R1 > R2>1 . < Rn

OAssume we have a function cost() that
gives us the cost of every join tree

OFind the best linear join tree for the query

Dynamic Programming

OFor each subquery QLI {R1, ..., Rn}
compute the following:
0Size(Q)
OA best plan for Q: Plan(Q)
OThe cost of that plan: Cost(Q)

Dynamic Programming

OStep 1: For each {Ri} do:
0Size({Ri}) = B(Ri)
OPlan({Ri}) = Ri
OCost({Ri}) = (cost of scanning Ri)

Dynamic Programming

OStep i: For each Q[1{R1, ..., Rn} of
cardinality i do:
OCompute Size(Q)
OFor every pair of subqueries Q’, Q"
st.Q=QUQ”
compute cost(Plan(Q") <« Plan(Q"))
OCost(Q) = the smallest such cost
OPlan(Q) = the corresponding plan

Dynamic Programming

OReturn Plan({R1, ..., Rn})

Dynamic Programming

To illustrate, we will make the following
simplifications:
O Cost(P1 > P2) = Cost(P1) + Cost(P2) +
size(intermediate result(s))
O Intermediate results:

OIf P1 = a join, then the size of the intermediate result
is size(P1), otherwise the size is 0

O Similarly for P2
OCostofascan =0

40

Dynamic Programming

0 Example:
0 Cost(R5 ™MR7) =0 (no intermediate results)
O Cost((R2> R1) b1 R7)

= Cost(R2 b<i R1) + Cost(R7) + size(R2<1 R1)
= size(R2 <1 R1)

41

Dynamic Programming

O We used naive size/cost estimations
O In practice:
[More realistic size/cost estimations
[Heuristics for Reducing the Search Space
[Restrict to left linear trees
[Restrict to trees “without cartesian product”
O Need more than just one plan for each subquery:
O “interesting orders”

42

